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Geodetic Aspects of Celestial Navigation

The Ellipsoid

Celestial navigation is based upon the assumption that the earth is a sphere and, consequently, on the laws of spherical
trigonometry. In reality, the shape of the earth is rather irregular and approximates anoblate spheroid (ellipsoid)
resulting from two forces,gravitation andcentrifugal force, acting on the viscous body of the earth. While gravitation
alone would force the earth to assume the shape of a sphere, the state of lowest potential energy, the centrifugal force
caused by the earth's rotation contracts the earth along theaxis of rotation (polar axis) and stretches it along the plane of
the equator. The local vector sum of both forces is called gravity.

A number of reference ellipsoids are in use to describe the shape of the earth, for example theWorld Geodetic System
(WGS) ellipsoid of 1984.The following considerations refer to the ellipsoid model of the earth which is sufficient
for most navigational purposes. Fig.9-1 shows a meridional section of the ellipsoid.

Earth data (WGS 84 ellipsoid) :

Equatorial radius re 6378137.0 m 

Polar radius rp 6356752.3142 m 

Flattening f = (re- rp) / re 1/298.25722 

 

Due to the flattening of the earth, we have to distinguish betweengeodetic andgeocentric latitude which would be the
same if the earth were a sphere. The geodetic latitude of a given position, Lat, is the angle formed by the local normal
(perpendicular) to the surface of the reference ellipsoid and the plane of the equator. The geocentric latitude, Lat', is the
angle formed by the local radius vector and the plane of the equator. Geodetic and geocentric latitude are interrelated as
follows:

Geodetic and geocentric latitude are equal at the poles and on the equator. At all other places, the geocentric latitude,
Lat', is smaller than the geodetic latitude, Lat. As with thespherical earth model, geodetic and geocentric longitude are
equal. Maps are always based upon geodetic coordinates. These are also referred to as geographic coordinates.
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In the following, we will discuss the effects of the oblateness (flattening) of the earth on celestial navigation. Zenith
distances (and altitudes) measured by the navigator alwaysrefer to the local plumb line which aligns itself with gravity
and points to theastronomical zenith. Even the visible sea horizon correlates with the astronomical zenith since the
water surface is perpendicular to the local plumb line.

With a homogeneous mass distribution throughout the ellipsoid, the plumb line coincides with the local normal to the
ellipsoid which points to the geodetic zenith. Thus, astronomical and geodetic zenith are identical in this case.

Thegeocentric zenith is defined as the point where the extended local radius vector of the earth intersects the celestial
sphere. The angular distance of the geodetic zenith from thegeocentric zenith is calledangle of the vertical, v. The
angle of the vertical is a function of the geodetic latitude. The following formula was proposed by Smart [9]:

The coefficients of the above formula refer to the proportions of the WGS 84 ellipsoid.

 

The angle of the vertical at a given position equals the difference between geodetic and geocentric latitude (Fig. 9-1):

The maximum value of v, occurring at 45° geographic latitude, is approx. 11.5'. Thus, the geocentric latitude of an
observer being at 45°geodetic latitude is only 44° 48.5'. This difference is not negligible. Therefore, the navigator has to
know if the coordinates of a fix obtained by astronomical observations are geodetic or geocentric. Altitudes are
measured with respect to the sea horizon or an artificial horizon. Both correlate with the local plumb line which points
to the geodetic (astronomical) zenith. Thus, the latter is the only reference available to the navigator. As demonstrated
in Fig. 9-1, the altitude of the celestial north pole, PN, (corrected altitude of Polaris) with respect to the geoidal horizon
equals the geodetic, not the geocentric latitude. A noon latitude, being the sum or difference of the (geocentric)
declination and the zenith distance with respect to the geodetic zenith would give the same result.

Assuming a homogeneous mass distribution within the (ellipsoidal) earth, latitudes obtained by celestial
observations are geodetic latitudes since the navigator measures altitudes with respect to the local geodetic zenith
(directly or indirectly). 

It is further important to know if the oblateness of the earthcauses significant errors due to the fact that calculationsof
celestial navigation are based on a spherical earth model. According to the above values for polar radius and equatorial
radius of the earth, the great circle distance of 1' is 1.849 km at the poles and 1.855 km at the equator. This small
difference does not produce a significant error when plotting lines of position. It is therefore sufficient to use the
adopted mean value (1 nautical mile = 1.852 km). However, when calculating the great circle distance (see chapter 11)
of two locations thousands of nautical miles apart, the error caused by the oblateness of the earth can increase to several
nautical miles. If extraordinary precision is required, the formulas for geodetic distance given in [2] should be used.A
geodesic line is the shortest path between two points on the surface of an ellipsoid. On the surface of a sphere, a
geodesic line is the arc of a great circle.

The Parallax of the Moon

Due to the oblateness of the earth, the distance between geoidal and celestial horizon is not constant but can assume any
value between rp and re, depending on the observer's latitude. This has a measurable effect on the parallax of the moon
since tabulated values for HP refer to the equatorial radius, re. The parallax of the moon is further affected by the
displacement of the plumb line from the earth's center. A correction formula compensating both effects is given in
chapter 2. The asymmetry of the plumb line with respect to theearth's center even causes a small (negligible) parallax
in azimuth unless the moon is on the local meridian. In the following, we will calculate the effects of the oblateness of
the earth on the parallax of the moon with the exact formulas of spherical astronomy [9]. For practical navigation, the
simplified correction formulas given in chapter 2 are accurate enough.
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Fig. 9-2 shows a projection of the astronomical zenith, Za, the geocentric zenith, Zc, and the geographic position of the

moon, M, on the celestial sphere, an imaginary hollow sphere of infinite diameter with the earth at its center.

The geocentric zenith, Zc, is the point where a straight line from the earth's center through the observer's position

intersects the celestial sphere. The astronomical zenith,Za, is the point at which the plumb line going through the

observer's position intersects the celestial sphere. Za and Zc are on the same meridian. M is the projected geocentric

position of the moon defined by Greenwich hour angle and declination. Unfortunately, the position of a body defined
by GHA and Dec is commonly called geographic position (see chapter 3) although GHA and Dec are geocentric
coordinates. M' is the point where a straight line from the observer through the moon's center intersects the celestial
sphere. Zc, M, and M' are on a great circle. The zenith distance measured by the observer is za' because the astronomical

zenith is the available reference. The quantity we want to know is za, the astronomical zenith distance corrected for

parallax in altitude. This is the angular distance of the moon from the astronomical zenith, measured by a fictitious
observer at the earth's center.

The known quantities are v, Aa', and za'. In contrast to the astronomer, the navigator is usually not able to measure Aa'

precisely. For navigational purposes, the calculated azimuth (see chapter 4) may be substituted for Aa'.

We have three spherical triangles, ZaZcM', ZaZcM, and ZaMM'. First, we calculate zc' from za', v, and Aa' using thelaw
of cosines for sides (see chapter 10):

To obtain zc, we first have to calculate the relative length (re = 1) of the radius vector, r, and the geocentric parallax, pc:
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HP is the equatorial horizontal parallax.

The geocentric zenith distance corrected for parallax is:

Using the cosine formula again, we calculate Ac, the azimuth angle of the moon with respect to the geocentric zenith:

The astronomical zenith distance corrected for parallax is:

Thus, the parallax in altitude (astronomical) is:

For celestial navigation, the exact formulas of spherical astronomy are not needed, and the correction formula given in
chapter 2 is accurate enough.

The small angle between M and M', measured at Za, is the parallax in azimuth, paz:

The correction for paz is always applied so as to increase the angle formed by the azimuth line and the local meridian.
For example, if AzN is 315°, paz is subtracted, and paz is added if AzN is 225°.

There is a simple formula for calculating the approximate parallax in azimuth:

This formula always returns the correct sign for paz, and paz is simply added to AzN.

The parallax in azimuth does not exist when the moon is on the local meridian and is greatest when the moon ist east or
west of the observer. It is further greatest at medium latitudes (45°) and non-existant when the observer is at one of the
poles or on the equator (v = 0). Usually, the parallax in azimuth is only a fraction of an arcminute and therefore
insignificant to celestial navigation. The parallax in azimuth increases with decreasing zenith distance.

Other celestial bodies do not require a correction for the oblateness of the earth since their parallaxes are very
small compared with the parallax of the moon. 
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The Geoid

The earth is notexactly an oblate ellipsoid. The shape of the earth is more accurately described by thegeoid, an
equipotential surface of gravity. 

The geoid has elevations and depressions caused by geographic features and a non-uniform mass distribution (materials
of different density). Elevations occur at local accumulations of matter (mountains, ore deposits), depressions at local
deficiencies of matter (valleys, lakes, caverns). The elevation or depression of each point of the geoid with respect to
the reference ellipsoid is found by gravity measurement.

On the slope of an elevation or depression of the geoid, the plumb line (the normal to the geoid) does not coincide with
the normal to the reference ellipsoid, and the astronomicalzenith differs from the geodetic zenith. Thus, an
astronomical position (obtained through uncorrected astronomical observations) may slightly differ from the geodetic
position. The small angle formed by the local plumb line and the local normal to the reference ellipsoid is called
deflection of the vertical. Usually, this angle is smaller than one arcminute, but greater deflections of the vertical have
been reported, for example, in coastal waters with adjacent high mountains.

The local deflection of the vertical can be expressed in a latitude component and a longitude component. A position
found by astronomical observations has to be corrected for both quantities to obtain the geodetic (geographic) position.
The position error caused by the local deflection of the vertical is usually not relevant to celestial navigation at sea but
is important to surveying and map-making where a much higher degree of accuracy is required.


