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Geodetic Aspects of Celestial Navigation

TheEllipsoid

Celestial navigation is based upon the assumption thatdtih & a sphere and, consequently, on the laws of spherical
trigonometry. In reality, the shape of the earth is rathezgular and approximates ablate spheroid (ellipsoid)
resulting from two forceggravitation andcentrifugal force, acting on the viscous body of the earth. While gravitation
alone would force the earth to assume the shape of a spherstatie of lowest potential energy, the centrifugal force
caused by the earth's rotation contracts the earth aloraxibef rotation (polar axis) and stretches it along the plaih

the equator. The local vector sum of both forceslkedgravity.

A number of reference ellipsoids are in use to describe thpesif the earth, for example thi¢orld Geodetic System
(WGS) ellipsoid of 1984.The following considerations refer to the ellipsoid model of the earth which is sufficient
for most navigational purposes. Fig.9-1 shows a meridional section of the ellipsoid.
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Earth data (WGS 84 ellipsoid) :

Equatorial radius I'g 6378137.0 m
Polar radius " 6356752.3142 m
Flattening f=(rgrg) /1g 1/298.25722

Due to the flattening of the earth, we have to distinguistvieengeodetic andgeocentric latitude which would be the
same if the earth were a sphere. The geodetic latitude ofengivsition, Lat, is the angle formed by the local normal
(perpendicular) to the surface of the reference ellipsadithe plane of the equator. The geocentric latitude, Lsathe
angle formed by the local radius vector and the plane of tltey. Geodetic and geocentric latitude are interrelased a
follows:

tanLat' = (1- f)® fanLat

Geodetic and geocentric latitude are equal at the poles antdeoequator. At all other places, the geocentric latitude,
Lat', is smaller than the geodetic latitude, Lat. As with sipberical earth model, geodetic and geocentric longituee a
equal. Maps are always based ugeodetic coordinates. These are also referred togeegr aphic coor dinates.



In the following, we will discuss the effects of the oblategdflattening) of the earth on celestial navigation. Zenit
distances (and altitudes) measured by the navigator alvedgsto the local plumb line which aligns itself with grawit
and points to thestronomical zenith. Even the visible sea horizon correlates with the astronahz@enith since the
water surface is perpendicular to the local plumeé.|

With a homogeneous mass distribution throughout the elidgghe plumb line coincides with the local normal to the
ellipsoid which points to thgeodetic zenith. Thus, astronomical and geodetic zenith are idehith this case.

The geocentric zenith is defined as the point where the extended local radius vettihe earth intersects the celestial
sphere. The angular distance of the geodetic zenith frongebeentric zenith is calledngle of the vertical, v. The
angle of the vertical is a function of the geodé&idude. The following formula was proposed®myart[9]:

v["'] = 692666Isin(2[Lat) —1.163Isin(4[Lat) + 0.026[sin(6![Lat)

The coefficients of the above formula refer to pheportions of the WGS 84 ellipsoid.

The angle of the vertical at a given position eglaé difference between geodetic and geocentiiada ig. 9-1):
v = Lat-Lat’

The maximum value of v, occurring at 45° geographic latifudeapprox. 11.5'. Thus, the geocentric latitude of an
observer being at 45°geodetic latitude is only 44° 48.5's @ifference is not negligible. Therefore, the navigatas ko
know if the coordinates of a fix obtained by astronomical eslsations are geodetic or geocentric. Altitudes are
measured with respect to the sea horizon or an artificiakbor Both correlate with the local plumb line which points
to the geodetic (astronomical) zenith. Thus, the lattehésdnly reference available to the navigator. As demorestrat
in Fig. 9-1, the altitude of the celestial north poley,Rcorrected altitude of Polaris) with respect to the geldndaizon
equals the geodetic, not the geocentric latitude. A nooituti, being the sum or difference of the (geocentric)
declination and the zenith distance with respethéogeodetic zenith would give the same result.

Assuming a homogeneous mass distribution within the (ellipsoidal) earth, latitudes obtained by celestial
observations ar e geodetic latitudes since the navigator measur es altitudes with respect to the local geodetic zenith
(directly or indirectly).

It is further important to know if the oblateness of the eardluses significant errors due to the fact that calculatodns
celestial navigation are based on a spherical earth modebr8ling to the above values for polar radius and equatorial
radius of the earth, the great circle distance of 1' is 1.849ak the poles and 1.855 km at the equator. This small
difference does not produce a significant error when pigtiines of position. It is therefore sufficient to use the
adopted mean value (1 nautical mile = 1.852 km). Howevernndadculating the great circle distance (see chapter 11)
of two locations thousands of nautical miles apart, thereraosed by the oblateness of the earth can increase to kevera
nautical miles. If extraordinary precision is requireds formulas for geodetic distance given in [2] should be uged.
geodesic line is the shortest path between two points on the surface of lgpsa@t. On the surface of a sphere, a
geodesic line is the arc of a great circle.

The Parallax of the Moon

Due to the oblateness of the earth, the distance betweedaj@wid celestial horizon is not constant but can assume any
value betweengrand ¢, depending on the observer's latitude. This has a measueébt on the parallax of the moon
since tabulated values for HP refer to the equatorial radiusThe parallax of the moon is further affected by the
displacement of the plumb line from the earth's center. Aemion formula compensating both effects is given in
chapter 2. The asymmetry of the plumb line with respect toetinth's center even causes a small (negligible) parallax
in azimuth unless the moon is on the local meridian. In thio¥ahg, we will calculate the effects of the oblateness of
the earth on the parallax of the moon with the exact formufasgpberical astronomy [9]. For practical navigation, the
simplified correction formulas given in chapterr2 accurate enough.



Fig. 9-2 shows a projection of the astronomical zenitly,the geocentric zenith, Zand the geographic position of the
moon, M, on theelestial sphere, an imaginary hollow sphere of infinite diametathithe earth at its center.
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The geocentric zenith, Zis the point where a straight line from the earth's centesugh the observer's position
intersects the celestial sphere. The astronomical zeZijhis the point at which the plumb line going through the
observer's position intersects the celestial sphef@nd Z, are on the same meridian. M is the projected geocentric

position of the moon defined by Greenwich hour angle andidatbn. Unfortunately, the position of a body defined
by GHA and Dec is commonly called geographic position (sesptdr 3) although GHA and Dec are geocentric
coordinates. M' is the point where a straight line from theeawber through the moon's center intersects the celestial
sphere. Z M, and M’ are on a great circle. The zenith diseameasured by the observer jsecause the astronomical

zenith is the available reference. The quantity we want tovkis z, the astronomical zenith distance corrected for

parallax in altitude. This is the angular distance of the mérom the astronomical zenith, measured by a fictitious
observer at the earth's center.

The known quantities are v, A and z'. In contrast to the astronomer, the navigator is usualtyah¢e to measure A
precisely. For navigational purposes, the calcdla@muth (see chapter 4) may be substituted for A

We have three spherical trianglesZZM', Z.Z M, and ZMM'. First, we calculate z from z, v, and A, using thelaw
of cosinesfor sides (see chapter 10):

cosz, = cosz, [Gosv + sinz, [$inv E:os(180’ - Aa)
z = arccos(cosz;1 [Gosv —sinz, [$inv E:osA;)

To obtain z, we first have to calculate the relative lengi=1) of the radius vector, r, and the geocentai@flax, p:

p, = arcsin (,oE'kin HP&inZ, )

=T = \/ 1-(2e2 —e4) [$inz Lat T2
r 1-e2[3in2 Lat r2



HP is the equatorial horizontal parallax.

The geocentric zenith distance corrected for paxati:

Z. =2 -p,

Using the cosine formula again, we calculajethe azimuth angle of the moon with respect togixecentric zenith:

cosz, —cosz, [¢osv
sinz, [inv

A, = arccos

The astronomical zenith distance corrected forljzerss:

z, = arccoq cosz, [cosv +sinz, [sinvIcosA, )

Thus, theparallax in altitude (astronomical) is:

PA=2z -2z

For celestial navigation, the exact formulas of spheristdlcmomy are not needed, and the correction formula given in
chapter 2 is accurate enough.

The small angle between M and M', measured,asZheparallax in azimuth, p,,

cosp, — cosz, [tosz,
sinz, [3inz,

p,, = arccos

The correction for p is always applied so as to increase the angle formed by theustziline and the local meridian.
For example, if Ag is 315°, p,is subtracted, and,pis added if Ag is 225°.

There is a simple formula for calculating the aprmte parallax in azimuth:

(2[Lat) [sin Az,

p, = f HPOT
cosHc

This formula always returns the correct sign fgy and R, is simply added to Ag

The parallax in azimuth does not exist when the moon is ondb& Imeridian and is greatest when the moon ist east or
west of the observer. It is further greatest at medium ldégu(45°) and non-existant when the observer is at one of the
poles or on the equator (v = 0). Usually, the parallax in atims only a fraction of an arcminute and therefore
insignificant to celestial navigation. The parallexazimuth increases with decreasing zenith degtan

Other celestial bodies do not require a correction for the oblateness of the earth since their parallaxes are very
small compared with the parallax of the moon.



The Geoid

The earth is noexactly an oblate ellipsoid. The shape of the earth is more accyraetcribed by theyeoid, an
equipotential surface of gravity.

The geoid has elevations and depressions caused by gemgfiegtiares and a non-uniform mass distribution (materials
of different density). Elevations occur at local accumiolas of matter (mountains, ore deposits), depressionscat lo
deficiencies of matter (valleys, lakes, caverns). Theatlen or depression of each point of the geoid with respect to
the reference ellipsoid is found by gravity measenst.

On the slope of an elevation or depression of the geoid, thmlpline (the normal to the geoid) does not coincide with
the normal to the reference ellipsoid, and the astronomieadith differs from the geodetic zenith. Thus, an
astronomical position (obtained through uncorrected astronomical observatimay slightly differ from the geodetic
position. The small angle formed by the local plumb line ahd kbbcal normal to the reference ellipsoid is called
deflection of the vertical. Usually, this angle is smaller than one arcminute, buttgredeflections of the vertical have
been reported, for example, in coastal waters adiacent high mountains.

The local deflection of the vertical can be expressed inituti¢ component and a longitude component. A position
found by astronomical observations has to be correcteddtr dpuantities to obtain the geodetic (geographic) pasitio
The position error caused by the local deflection of theigakis usually not relevant to celestial navigation at set. b
is important to surveying and map-making where ahrhigher degree of accuracy is required.



